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Secure Learning in Adversarial Deep
Neural Networks



Machine Learning in Physical World
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AutonomousDriving

Malware	Classification

Smart CityHealthcare

Fraud Detection Biometrics Recognition



Security & Privacy Problems
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Security Problems

Privacy Concerns



We	Are	in	Adversarial	Environments

4



5

While cybersecurity R&D needs are addressed in greater
detail in the NITRD Cybersecurity R&D Strategic Plan, some
cybersecurity risks are specific to AI systems. One key
research area is “adversarial machine learning”,
that explores the degree to which AI systems can be
compromised by “contaminating” training data, by modifying
algorithms, or by making subtle changes to an object that
prevent it from being correctly identified….

- National Science and Technology Council
2016



Perils of Stationary	Assumption

Traditional machine	learning	approaches assume

Training	Data

≈
Testing	Data
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Adversarial Examples

7

Goodfellow,	Ian	J.,	Jonathon	Shlens,	and	Christian	Szegedy.	“Explaining	and	harnessing	adversarial	examples.” ICLR 2015.
Li,	Bo,	Yevgeniy Vorobeychik,	and	Xinyun Chen.	“A	General	Retraining	Framework	for	Scalable	Adversarial	
Classification.” ICLR. (2016).
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Optimization Based Attack
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[Carlini, Wagner, Towards robustness of neural networks. 2017]



Autonomous Driving is the Trend…



However,What We Can See Everyday…



The	Physical	World	Is…	Messy

Varying	Physical	Conditions	 (Angle,	 Distance,	Lighting,	…) Physical	Limits	on	Imperceptibility

Fabrication/Perception	Error	(Color	Reproduction,	 etc.) Background	Modifications*

Digital	Noise
(What	you	want)

What	is	
printed

What	a	camera	
may	see
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Image	Courtesy,	
OpenAI

[Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song, 2017]



An	Optimization	Approach	To	Creating	
Robust	Physical	Adversarial	Examples
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Perturbation/Noise	Matrix

Lp norm	(L-0,	L-1,	L-2,	…) Loss	Function

Adversarial	Target	Label



Optimizing	Spatial	Constraints	
(Handling	Limits	on	Imperceptibility)
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Subtle	Poster

Camouflage	Sticker
Mimic	vandalism

“Hide	in	the	human	
psyche”



Handling	Fabrication/Perception	Errors

14

P	is	a	set	of	printable	RGB	triplets

Color	Space

Sampled	Set	of	RGB	Triplets

NPS	based	on	Sharif	et	al.,	“Accessorize	to	a	crime,”	CCS	2016



How	Can	We	Realistically	Evaluate	
Attacks?
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Lab	Test	(Stationary) Field	Test	(Drive-
By)

~	250	feet,	0	to	20	mph

Record	video

Sample	frames	every	k	frames

Run	sampled	frames	through	DNN
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Subtle	Poster Subtle	Poster Camo	Graffiti Camo	Art Camo	Art

Lab	Test	Summary
(Stationary)

Target	Class:	Speed	Limit	45



Art Perturbation
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Subtle Perturbation
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Physical Attacks Against Detectors
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Physical Attacks Against Detectors
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Adversarial Examples in Physical World

21

Adversarial perturbations are possible in physical
world under different conditions and viewpoints,
including the distances and angles.



Different	approaches	to	optimize	the	
objective

• Fast	approaches
– Fast	gradient	sign	(𝑑 = ⋅ $):	𝑥

∗ = 𝑥 + 𝐵sgn 𝛻-ℓ 𝑓0 𝑥 , 𝑦

– Fast	gradient	(𝑑 = ⋅ 3):		𝑥
∗ = 𝑥 + 𝐵 45ℓ 67 - ,8

45ℓ 67 - ,8 9

• Iterative	approaches
– E.g.,	use	a	SGD	optimizer,	such	as	Adam,	to	optimize

max
-∗

ℓ 𝑓0 𝑥∗ , 𝑦 + 𝜆𝑑(𝑥, 𝑥∗)

• Optimization
• Need	to	know	model	𝒇𝜽

22



A	General	Framework	for	Black-box
attacks

• Zero-QueryAttack
– Randomperturbation
– Difference of means
– Transferability-basedattack

• Practical	Black-Box	Attacks	against	Machine	Learning
• Ensemble	transferability-based	attack	

• Query Based Attack
– Finite difference gradient estimation
– Query reduced gradient estimation
– Results:	similar	effectiveness	to	whitebox attack
– A	general	active	query	game	model	



Transferability

24

Papernot, McDaniel, Goodfellow, Transferability	in	Machine	Learning:	from	Phenomena	 to	Black-
Box	Attacks	using	Adversarial	Samples. 2016
Xiao, Li, Malware	Evasion	Attacks	Based	on	Generative	Adversarial	Networks	(GANs), 2017.

MNIST PDF Malware



Targeted	vs	Non-targeted

•Non-targeted	adversarial	examples
• The	goal	is	to	mislead	the	classifier	to	predict	any	labels	other	than	
the	ground	truth

• Most	existing	work	deals	with	this	goal

• Targeted	adversarial	examples
• The	goal	is	to	mislead	the	classifier	to	predict	a	target	label	for	an	
image

• Harder!

25
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VGG16 Military uniform

ResNet50 Jigsaw puzzle

ResNet101 Motor scooter

ResNet152 Mask

GoogLeNet Chainsaw

Ground truth: running shoe



Targeted	Adversarial	Example’s	Transferability	
Among	Two	Models	is	Poor!

27

Only 2% of the adversarial images generated for 
VGG16 (row) can be predicted as the targeted label by 
ResNet50 (column)



Black-Box 
System

Adversary

White-Box 
Model

Adversarial 
Examples

Transfer	to

Black-box Attacks Based On Transferability



Black-Box 
System

Adversary

White-
Box 

Model

Adversarial 
Examples

Transfer	to

Ensemble Targeted Black-box Attacks Based On Transferability

White-
Box 

Model

White-
Box 

Model

Liu, Chen, Liu, Song. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 



Clarifai.com

Ground truth from ImageNet: broom jacamar



• Ground truth: broom
• Target label: jacamar

Adversarial	Example	on	Clarifai.com



Clarifai.com

Ground truth on ImageNet: Waterbuffalo

rugby ball



• Ground truth: water buffalo
• Target label: rugby ball

Adversarial	Example	on	Clarifai.com



Clarifai.com

Ground truth from ImageNet: rosehip stupa

34

LCLS17. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 



• Ground truth: rosehip
• Target label: stupa

Adversarial	Example	on	Clarifai.com

35

LCLS17. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 



Black-box attacks

• Zero-Query Attack (Previous methods)
– Random perturbation
– Difference of means
– Transferability based attack

• Query Based Attack (Our methods)
– Finite difference gradient estimation
– Query reduced gradient estimation

The zero-query attack can be viewed as a special case for the query based attack,
where the number of queries made is zero

[Bhagoji, Li, He, Dawn, 2017]



Query Based attacks

• Finite differencegradientestimation
• Given d-dimensional vector x, we can make 2d queries to estimate the

gradient as below

• An example of approximate FGS with finite difference

• Query reduced gradientestimation
• Random grouping
• PCA

xadv = x+ ✏ · sign (FD
x

(`f (x, y), �)) Similarly, we canalso approximate for
logit-based loss by making2d queries



Effectivenessof varioussingle stepblack-box attacksonMNIST. The y-axis representsthe
variation in adversarial successas increases.✏

Finite Differencesmethodoutperformother black-boxattacksandachievessimilar
attachsuccessratewith thewhite-boxattack

FD-xent andFD-logit are
overlapped



Effectivenessof varioussingle stepblack-box attacksonCIFAR-10. The y-axis representsthe
variation in adversarial successas increases.

Finite Differencesmethodoutperformother black-boxattacksandachievessimilar
attachsuccessratewith thewhite-boxattack

✏



Adversarial success rates forGradient Estimationattackswithquery reductiononModel A (MNIST)and Resnet-32 (CIFAR-10).

Gradient Estimation Attack with Query
Reduction

Finite Differencesmethodwithquery reduction performapproximatelysimilarwith the gradient estimation
black-box attack



Black-box Attack Clarifai

The Gradient Estimationblack-boxattackonClarifai’s ContentModerationModel

Original image,classified as “drug”
witha confidenceof 0.99

Adversarial example,classifiedas
“safe”witha confidence of 0.96



Black-box Attacks

42

Black-box attacks are possible on deep neural
networks with query access.
The number of queries needed can be reduced.



Generating	Adversarial	Examples	with	
Adversarial	Networks

L = Lf
adv + ↵LGAN + �Lhinge

L
GAN

= E
x⇠Pdata(x) logD(x) + E

x⇠Pdata(x) log(1�D(x+ G(x)))

Black-box can be performed
here via distillation

The GAN loss here tries to ensure the diversity of adversarial examples

[Chaowei Xiao, Bo Li, Jun-yan Zhu, Warren He,Mingyan Liu, Dawn Song, 2017]



Semi-white box attackonMNIST Black-boxattackonMNIST
The perturbed imagesare veryclose tothe originalones. The original images lie on thediagonal.



The perturbed images are very close to the original ones. The original images lie on the
diagonal.



Poodle Electric guitarBasketballAmbulance





Attack Effectiveness Under Defenses

Attack	success	 rate	of	adversarial	examples	generated	by	AdvGAN in	
semi-whitebox setting under	defenses	 on	MNIST	and	CIFAR-10



Attack Effectiveness Under Defenses



Spatially Transformed Adversarial
Examples

[Xiao,	Zhu,	Li,	He,	Liu,	Song.	ICLR	2018]



Examples generated by stAdv

Adversarial examples generated by stAdv on MNIST
The ground truth images are shown in the diagonal

Flow visualization on	MNIST.	The	digit	 “0‘’	is	misclassified	 as	“2’’.	



Attack Effectiveness Under Defenses

Attack	success	rate	of	adversarial	examples	generated	by	stAdv against	different	models	under	standard	
defense	on	MNIST	and	CIFAR-10



Attention	of	network

CAM	attention	visualization	for	ImageNet	inception_v3	model.	(a)	the	original	
image	and	(b)-(d)	are	stAdv adversarial	examples	targeting	different	classes.	
Row	2	shows	the	attention	visualization	for	the	corresponding	images	above.



CAM	attention	visualization	for	ImageNet	inception_v3	model.	Column	1	shows	the	CAM	map	
corresponding	to	the	original	image.	Column	2-4	show	the	adversarial	examples	generated	by	
different	methods.	(a)	and	(e)-(g)	are	labeled	as	the	ground	truth	“cinema”, while	(b)-(d)	and	(h)	
are	labeled	as	the	adversarial	target	“missile.”

inception_v3	model

Adversarial	trained	
inception_v3	model



Adversarial	Examples	Prevalent	in	Deep	Learning	Systems

• Most	existing	work	on	adversarial	examples:
– Image	classification	 task
– Target	model	is	known

• Our	investigation	on	adversarial	examples:

Blackbox
Attacks

Weaker	Threat	Models
(Target	model	is	unknown)

Generative	
Models

Deep	
Reinforcement	

Learning

VisualQA/	
Image-to-code

Other	tasks	and	model	classes

New	Attack	
Methods

Provide	more	diversity	of	attacks



Generative	models

● VAE-like	models	(VAE,	VAE-GAN)	use	an	intermediate	latent	
representation

● An	encoder:	maps	a	high-dimensional	input	into	lower-
dimensional	latent	representation	z.

● A	decoder:maps	the	latent	representation	back	to	a	high-
dimensional	reconstruction.



Adversarial	Examples	in	Generative	Models

● An	example	attack	scenario:
● Generative	model	used	as	a	compression	scheme

● Attacker’s	goal:	for	the	decompressor to	reconstruct	a	
different	image	from	the	one	that	the	compressor	sees.



Adversarial	Examples	for	VAE-GAN	in	MNIST
Target	Image

Jernej Kos,	Ian	Fischer,	Dawn	Song:	Adversarial	Examples	for	Generative	Models

Original	images Reconstruction	of	original	images

Adversarial	examples Reconstruction	of	adversarial	examples



Adversarial	Examples	for	VAE-GAN	in	SVHN
Target	Image

Jernej Kos,	Ian	Fischer,	Dawn	Song:	Adversarial	Examples	for	Generative	Models

Original	images Reconstruction	of	original	images

Adversarial	examples Reconstruction	of	adversarial	examples



Target	Image

Jernej Kos,	Ian	Fischer,	Dawn	Song:	Adversarial	Examples	for	Generative	Models

Original	images Reconstruction	of	original	images

Adversarial	examples Reconstruction	of	adversarial	examples

Adversarial	Examples	for	VAE-GAN	in	SVHN



Takeaways

VAE-like generative models are vulnerable to 
adversarial examples



Visual Question & Answer (VQA)

Multimodal	Compact	Bilinear	Pooling	for	Visual	Question	Answering	and	Visual	Grounding,	 Fukui	et	al.,	https://arxiv.org/abs/1606.01847



Benign image

Adversarial example

Q: Where is 
the plane?

Fooling VQA

Target: Sky

VQA
Model

Runway
Answer:

VQA
Model

Sky



Benign image

Adversarial example

Q: How many
cats are there?

Fooling VQA

Target: 2

VQA
Model

1
Answer:

VQA
Model

2



A3C:	A	Deep	Policy	on	Pong
Reinforcement learning algorithms:

• Actor – policy network to predict the 
action based on each frame

• Critics – value function to predict the 
value of each frame, and the action is 
chosen to maximize the expected 
value

• Actor-critics (A3C) – combine value 
function into the policy network to 
make prediction



Agent	in	Action:	attack	the	policy	
network

Original Frames Adversarial perturbation 
injected into every frame

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies. ICLR Workshop 2017



Agent	in	Action:	attack	the	value	
function

Original Frames Adversarial perturbation 
injected into every other 10 
frames

Song et al.: Delving into adversarial attacks on deep policies. ICLR Workshop 2017



Takeaways

Reinforcement learning systems (e.g., robotics, self-
driving systems) are also vulnerable to adversarial 
examples

To attack a reinforcement learning system, adversarial 
perturbations need not be injected to every frame.



Coffee Break!

69
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Numerous	Defenses	Proposed

Ensemble

Normalization

Distributional	detection

PCA	detection

Secondary	classification

Stochastic

Generative

Training	process

Architecture

Retrain

Pre-process	input

Detection

Prevention



Towards	Deep	Learning	Models	
Resistant	to	Adversarial	Attacks

72

• Use a	natural	saddle	point	(min-max)	formulation	to	capture	the	
notion	of	security	against	adversarial	attacks	in	a	principled	
manner.

• The	formulation	casts both	attacks	and	defenses	into	a	common	
theoretical	framework.

• Motivate projected	gradient	descent	(PGD)	as	a	universal	“first-
order	adversary”.

Madry et al. Towards	Deep	Learning	Models	Resistant	to	Adversarial	Attacks, ICLR 2017.



Model Capacity

73
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Towards	Deep	Learning	Models	
Resistant	to	Adversarial	Attacks
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Decision Boundary Analysis of
Adversarial Examples

76

He, Li, Song, Decision Boundary Analysis of Adversarial Examples, ICLR 2017.
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Adversarial Examples Detection
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Adversarial Examples Detection via
Local Intrinsic Dimensionality (LID)
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Adversarial Examples Detection
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There Is Still A Long Way For Defense

• Adversarial	Examples	Are	Not	Easily	Detected:	
Bypassing	Ten	Detection	Methods [Carlini,Wagner]

• Better threat model
• Better understanding of neural networks

82



Poisoning Attacks

Traditional machine	learning	approaches assume

Training	Data

≈
Testing	Data

83



Machine 
Learning 
Training

Training Data

Machine 
Learning model

Test Data

Prediction

Training Inference



Machine 
Learning 
Training

Training Data

Machine 
Learning model

Test Data

Prediction

Training Data Poisoning Inference

Training is under 
control of the 
defender

Test data is not 
tampered 



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Problem	
– Poisoningattack within learning systems
– Recommendation systems

• Nearest	neighbor	methods	
• Factorization-based methods

86
B.	Li,	Y.	Wang,	A.	Singh,	and	Y.	Vorobeychik.	Data	Poisoning	Attacks	on	Factorization-based	Collaborative	Filtering. (NIPS). 2016	



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Preliminaries
– Low rank matrix completion

– Alternating minimization

– Nuclear normminimization

87

, where



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Threat	model
– Assume	attack	malicious	inject rows .

– Availability attack

– Integrity attack

– Hybrid attack

88

↵m

Goal:



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Mimic	normal	user	behaviors
– Normal users do not pick items uniformly	at
random

– Stochastic gradient Langevin Dynamics (SGLD)

89

Malicious users that pick rated uniformly at random can be easily
identified by running a t-test against a known database consisting of
only normal users

[Welling and Teh 2011.]



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Normal users usually do not rate items uniformly at random

90



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Experiments	
– MovieLens dataset:	27,000 movieswith 138,000

users
– P value and RMSE/Average ratings for ALM with

different (a) (b)

91

� µ1 = 1, µ2 = 0 µ1 = 0, µ2 = 1

(a)																																										 (b)																																									



Data	Poisoning	Attacks	for Factorization Based
Collaborative Filtering

• Experiments
– RMSE for ALM with different percentage of malicious
profiles
(a)																			 (b)

92

µ1 = 1, µ2 = 0 µ1 = 1, µ2 = �1



Poisoning Attack Against SVM

• To maximize the hinge loss on a validation set

• Gradient ascent

93

x

0
c = xc + t · OL(xc)

dgk

dxc
=

X

j

(Qkj
d↵j

dxc
) + yk

db

dxc
+

dQkc

dxc
↵c , where Q = yyT �K

How does the SVM solution change during a single update of xc



Data	Poisoning	on	Multi-Task	Learning	(AAAI’18)

94

Single-task	learning	(STL)

Data	poisoning	on	STL:

A B C

A B C

A B C

A B C

Multi-task	learning	(MTL)

A+B+C

Data	poisoning	on	MTL:

A B C

A B C

A B C

A B C

A+B+C



Computing	Optimal	Attacks

95

Maximize	loss	of	targeted	tasks

Multi-task	learning	with	
poisoned	data

Formulation:	Bilevel Program

Solver:	Stochastic	Projected	Gradient	Descent



Experimental	Results

96

DIRECT	attack:	

Attacker	poisons:

Target	task:		

A

A

INDIRECT	attack:	

Attacker	poisons:

Target	task:		

B

A
A B C

A B C

A+B+C

Results:

• Direct	attacks	are	more	effective	
than	indirect	attacks

• Both	Direct	attacks	and	Indirect	
attacks	are	more	effective	than	
random	attacks



Poisoning Attacks for Face Recognition

97

Adding 5	poisoning	 samples	into	the	training	set	is	sufficient to	mislead	the	
model	 to	predict	the	poisoning	 labels	for	 the back-door	 images.

Truth image
(back-door)

Poisoning labels

[Chen, Liu, Li, Song, 2017]



Poisoning Attacks for Face Recognition
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Poisoning Attacks for Face Recognition
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Poisoning Attacks for Face Recognition

100

Deep neural networks are easy to be poisoning
attacked.



Machine 
Learning 
Training

Training Data

Machine 
Learning model

Test Data

Prediction

Training Data Poisoning Inference

Training is under 
control of the 
defender

Test data is not 
tampered 

What the best can the 
defender do to defend 
against training data 

poisoning?



Robust	Logistic	Regression	and	
Classification

102

Feng et al. Robust	Logistic	Regression	and	Classification, 2013

The	estimated	logistic	regression	curve	(red	solid)	is	far	away	from	the	
correct	one	(blue	dashed)	due	to	the	existence	of	just	one	outlier	(red	circle)
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Robust Linear Regression Against Data
Poisoning Attack

• Phase	1:	Rely	on	dimension	reduction	(PCA)	to	prune	
non-principal	noise	in	the	training	data

• Phase	2:	In	the	low-dimensional	space,	learn	a	linear	
model	(i.e.,	PCR)

104

Liu, Li, Vorobeychik, Oprea, Robust	Linear	Regression	Against	Training	Data	Poisoning. Aisec, 2017.

Main	Ideas:	a	two-phase	solution



Main	Challenges

• Both	of	the	two	phases	can	be	the	target of	the	training	data	
poisoning	adversary

• Have	no	assumption	on	the	ground	truth	distribution
– ...	except	assuming	they	lie	in	a	low-dimensional	manifold

105



What Can Be Achieved

• Prove a	sufficient	and	necessary condition	on	the	exact	sub-
space	recovery	problem
– Provides	a	criteria	that	the	PCA	process	cannot	be	
poisoned

• A	bound on	the	expected	test	error	when	the	
training	data	is	poisoned	up	to	𝜸 poisoning	rate
– i.e.,	inject	up	to	𝛾𝑁 poisoning	samples	into	the	pristine	
training	data	of	𝑁 samples

106



Which	line	fits	the	data	better?

107



Answer:	democracy!

108



What	about	now?

109



Observation	1:	When	𝛾 ≥ 1,	it	is	impossible to	
distinguish	the	poisoning	samples	from	the	

pristine	ones

110



What	is	the	mean of	the	data	
distribution?

111



How	can	a	data	poisoning	adversary
efficiently	fool the	mean	estimator?

112



Answer:	leveraging	the	pristine	data!

113



Answer:	leveraging	the	pristine	data

114



Answer:	leveraging	the	pristine	data

115



Observation	2:	the	data	poisoning	adversary	can	fool
a	machine	learning	algorithm	if	and	only	if	there	is	a	
portion	of	the	pristine	data	that	he	can	leverage

116



Sub-space	Recovery	Problem

• Problem	Definition	1	(Subspace	Recovery).	Design	
an	algorithm	ℒHIJKLIH8,	which	takes	as	input	𝑋,	
and	returns	a	set	of	vectors	𝐵 that	form	the	basis	
of	𝑋⋆

• Notation:
– 𝑋:	observed	(poisoned)	feature	matrix
– 𝑋⋆:	the	pristine	feature	matrix
– 𝑋O:	the	pristine	feature	matrix	with	noise

• 𝑋O = 𝑋⋆ + 𝑛𝑜𝑖𝑠𝑒

117



Noise	residual	and	sub-matrix	residual

• Noise	residual	𝑁𝑅(𝑋O) optimizes
min
WX

|𝑋O − 𝑋′|
s. t. rank 𝑋` ≤ 𝑘

• Sub-matrix	residual	𝑆𝑅(𝑋O) optimizes
min
d,e,f

|𝑋Od − 𝑈𝐵h|
s. t. rank 𝐵h = 𝑘, 𝐵h𝐵hi = 𝐼k, 𝑋⋆𝐵hi𝐵h ≠ 𝑋⋆

𝐼 ⊆ 1,2,… , 𝑛 , 𝐼 = 1 − 𝛾 𝑁

118



Sufficient	and	necessary	condition

• Theorem.	If	𝑆𝑅 𝑋O ≤ 𝑁𝑅(𝑋O),	then	no	algorithm	solves	
problem	1	with	a	probability	greater	than	1/2.	

• If	𝑆𝑅 𝑋O > 𝑁𝑅 𝑋O ,	then	Algorithm	2	solves	problem	1.

119



Trimmed	Principal	Component	Regression

• TPCR	Lemma.	Algorithm	3	
returns	𝛽r ,	such	that	for	any	real	
value	ℎ > 1,	with	at	least	
probability	of	1 − 𝑐ℎu3 for	some	
constant	𝑐,	we	have

𝐸 𝑥 𝛽r − 𝛽⋆
3

≤ 4𝜎3 1 +
1

1 − 𝛾
�

3

log 𝑐

120



Efficient	Algorithm	using	Alternative	Minimization

• Problem:	minimize	the	objective	in	the	following	form:

min
0
| 𝑙 𝑦~, 𝑓0 𝑥~ 𝑖 = 1,… , 𝑛 + 𝑛�}(𝑗)

�

���
• Strategy:	iteratively	do	the	following	two	steps	until	

convergence
– Find	the	subset	of	 𝑗 of	size	𝑛 that	minimizes	𝑙 𝑦� , 𝑓0 𝑥�
– Minimize	the	total	loss	with	respect	to	𝜃
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Sub-space	recover	experiments
(synthetic	data)

122



Robust regression experiments

123

Realmalicious domain dataset



Takeaways

Message	1.	The	poisoning	attacker	can	leverage	
pristine	data	distribution	to	construct	strong	
attacks

Message	2.	When	the	poisoning	ratio	is	not	
sufficiently	large,	we	can	bound	the	loss	on	the	
computed	estimator.
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Adversarial	Machine	Learning
• Adversarial	machine	learning:	

– Learning	 in	the	presence	of	adversaries

• Inference	time:	adversarial	example	fools	learning	system
– Evasion	attacks

• Evade	malware	detection;	fraud	detection

• Training	time:
– Attacker	poisons	training	dataset	(e.g.,	poison	labels)	to	fool	learning	system	to	learn	wrong	model

• Poisoning	attacks:	e.g.,	Microsoft’s	Tay twitter	chatbot
– Attacker	selectively	 shows	learner	 training	data	points	(even	with	correct	 labels)	to	fool	learning	

system	to	learn	wrong	model
– Data	poisoning	is	particularly	challenging	 with	crowd-sourcing	&	insider	attack
– Difficult	to	detect	when	the	model	has	been	poisoned

• Adversarial	machine	learning	particularly	important	 for	security	critical	system



Collaborators



Robust Smart Home

Large-Scale	Auditing GameWith
HumanInthe Loop

Thank	You!
Bo Li

crystalboli@berkeley.edu

http://www.crystal-boli.com/
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Privacy-Preserving DataAnalysis

PrivacyProtectedMobile
Healthcare

Topic of Workflow Analysis
GameTheoretic Auditing System

for EMR

Robust FaceRecognition
Against Poisoning Attack

Robust Learning


