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Security & Privacy Problems

WorldViews

Syrian hackers claim AP hack that tipped stock
market by $136 billion. Is it terrorism?
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Privacy Concerns




We Are in Adversarial Environments




While cybersecurity R&D needs are addressed in greater
detail in the NITRD Cybersecurity R&D Strategic Plan, some

cybersecurity risks are specific to Al systems. One key

research area is “adversarial machine learning”,
that explores the degree to which Al systems can be
compromised by “contaminating” training data, by modifying
algorithms, or by making subtle changes to an object that

prevent it from being correctly identified....
- National Science and Technology Council

2016



Perils of Stationary Assumption

Traditional machine learning approaches assume

{Training Data 1s.L4 ]

N
N

{ Testing Data Is.4J ]




Adversarial Examples
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n = esign(VxJ(97 X, y))
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Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial examples.” ICLR 2015.
Li, Bo, Yevgeniy Vorobeychik, and Xinyun Chen. “A General Retraining Frameworkfor Scalable Adversarial
Classification.” ICLR. (2016).



Optimization Based Attack

minimize D(z,z + )
such that C(z+6) =1t
z+4d€[0,1]"

minimize D(z,x + ) +c- f(x +9)
such that =z + § € [0,1]"

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob  mean prob || mean prob  mean prob || mean prob  mean prob
Our Lo 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
JISMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JISMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%
Our Lo 1.36 100% 0.17  100% 1.76  100% 0.33 100% 2.60 100% 0.51 100%
Deepfool 2.11  100% 0.85 100% — - — - — - — -
Our Lo 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% — 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26  100% 0.023 100%

[Carlini, Wagner, Towards robustness of neural networks. 2017]



Autonomous Driving is the Trend...




However, What We Can See Everyday.




The Physical World Is... Messy

Varying Physical Conditions (Angle, Distance, Lighting, ...) Physical Limits on Imperceptibility
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Image Courtesy,
OpenAl

Digital Noise Whatis  Whata camera
(What you want) printed may see

[Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song, 2017]
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An Optimization Approach To Creating
Robust Physical Adversarial Examples

arg;nin MOy + T (fo(z +6),y)

[

Perturbation/Noise Matrix Adversarial Target Label

Lp norm (L-0, L-1, L-2,...) Loss Function

argmm M6y + z ZJ f@

@@@@
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Optimizing Spatial Constraints
(Handling Limits on Imperceptibility)
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Subtle Poster

Mimic vandalism

“Hide in the human
psyche”

Camouflage Sticker
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Handling Fabrication/Perception Errors

k
1
argmin A|| My 0|+ > J(fo(wi+My-6),y*) +NPS(M-5)
)

1=1
A /
NPS(6) = Z H p—p > Pis aset of printable RGB triplets
ped p’EP
Color Space

' —> Sampled Set of RGB Triplets = ﬁ >
=

NPS based on Sharif et al., “Accessorize toa crime,” CCS 2016
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How Can We Realistically Evaluate
Attacks?

Lab Test (Stationary) Field Test (Drive- B
Angles =0°  Road Sign (Top View) By) @

~ 250feet, 0 to 20 mph

Record video

Camera

Sample frames every k frames

Run sampled frames through DNN

15



Lab Test Summary
(Stationary)

Target Class: Speed Limit 45

Subtle Poster  Subtle Poster Camo Graffiti Camo Art Camo Art
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Art Perturbation




Subtle Perturbation




Physical Attacks Against Detectors




Physical Attacks Against Detectors
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Adversarial Examples in Physical World

Adversarial perturbations are possible in physical
world under different conditions and viewpoints,
including the distances and angles.
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Different approaches to optimize the

objective
Fast approaches
— Fast gradientsign (d = ||°||oo): x* = x + Bsgn(V£(fe(x),y))
— Fastgradient(d = ||-||,): x* =x + B (“‘:’Cj(;f:(%);h )
X SRV

Iterative approaches
— E.g., use a SGD optimizer, such as Adam, to optimize

max £(fg(x"),y) + Ad(x, x7)

Optimization afg;miﬂ AMSllp + J(fo(z +0),y")
Need to know model f,



A General Framework for Black-box
attacks

e Zero-Query Attack
— Random perturbation
— Difference of means

— Transferability-based attack
* Practical Black-Box Attacks against Machine Learning
* Ensemble transferability-based attack

e Query Based Attack
— Finite difference gradient estimation
— Query reduced gradient estimation
— Results: similar effectiveness to whitebox attack
— A general active query game model



Transferability
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Papernot, McDaniel, Goodfellow, Transferability in Machine Learning: from Phenomena to Black-
Box Attacks using Adversarial Samples. 2016
Xiao, Li, Malware Evasion Attacks Based on Generative Adversarial Networks (GANs), 2017.



Targeted vs Non-targeted

* Non-targeted adversarial examples

* The goal is to mislead the classifier to predict any labels other than
the ground truth

* Most existing work deals with this goal

* Targeted adversarial examples

* The goal is to mislead the classifier to predict a target label for an
image

 Harder!



Ground truth: running shoe

VGG16 Military uniform
ResNet50 Jigsaw puzzle
ResNet101 Motor scooter
ResNet152 Mask

GooglLeNet |Chainsaw
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Targeted Adversarial Example’s Transferability
Among Two Models is Poor!

ResNetl152 | ResNetlOl | ResNet50 | VGG16 | GoogleNet | Incept-v3
ResNet152 100% 2% 1% 1% 1% 0%
ResNet101 3% 100% 3% 2% 1% 1%
ResNet50 4% 2% 100% 1% 1% 0%
VGG16 2% 1% 2% 100% 1% 0%
GoogLeNet 1% 1% LN 1% 100% 0%
Incept-v3 0% 0% 0% \ 0% 0% 100%

N\

Only 2% of the adversarial images generated for
VGG16 (row) can be predicted as the targeted label by
ResNet50 (column)




Black-box Attacks Based On Transferability

Adversary

Transfer to

—

Adversarial
Examples

Black-Box

System
White-Box

Model




Ensemble Targeted Black-box Attacks Based On Transferability

Adversary

_—

White- White- White-
20)¢ Box Box
Model Model Model

Transfer to

—

Adversarial
Examples

Black-Box

System

Liu, Chen, Liu, Song. Delvinginto Transferable Adversarial Examples and Black-box Attacks, ICLR 2017



Clarifai.com

Ground truth from ImageNet: broom

jacamar

clarifai

Clarifai Demo Configure

GENERAL-V1.3

wall  dirty  old  noperson

architecture  stone  building  dust

rope rustic  brick  ancient  soil



Adversarial Example on Clarifai.com

e  Ground truth: broom

«  Targetlabel: jacamar

Clarifai Demo Configure

GENERAL-V1.3

bird nature desktop color art tree
pattern bright feather painting texture
design decoration flora no person

beautiful leaf garden old illustration




Clarifai.com

Ground truth on ImageNet: Waterbuffalo

cIarif

Clarifai Demo
GENERAL-V1.3
cattle agriculture
bull horn cow

rural

grass

herd nature

countryside

livestock

mammal

field

farmland

Configure

animal

farm

milk

pasture

rugby ball



Adversarial Example on Clarifai.com

e Ground truth: water buffalo
«  Targetlabel: rugby ball

Clarifai Demo Configure
GENERAL-V1.3

pastime print illustration art nature

animal color ball old man one

vintage sport game people




Clarifai.com

Ground truth from ImageNet: rosehip

= clarifai

Clarifai Demo Configure
GENERAL-V1.3

no person nature wildlife little

fall fruit food outdoors

LCLS17. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017

stupa
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Adversarial Example on Clarifai.com

«  Ground truth: rosehip
*  Targetlabel: stupa

decoration art gold temple design
desktop pattern religion traditional
ancient color bright culture celebration

illustration old symbol Buddha artistic

sfw

LCLS17. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017



Black-box attacks

e Zero-Query Attack (Previous methods)

— Random perturbation
— Difference of means
— Transferability based attack

 Query Based Attack (Our methods)

— Finite difference gradient estimation
— Query reduced gradient estimation

The zero-query attack can be viewed as a special case for the query based attack,
where the number of queries made is zero

[Bhagoji, Li, He, Dawn, 2017]



Query Based attacks

* Finite difference gradientestimation

* Given d-dimensional vector x, we can make 2d queries to estimate the
gradient as below

g(x+de1)—g(x—der)
24

FDx(g(x), ) =

g(x—|—5ed)—g(x—5ed)
26

 An example of approximate FGS with finite difference

Tadv = X + € - sign (FDx (£¢(x,y),0)) [Similar/y, we canalso approximatefor]

. . . logit-based loss by making 2d queries
e Queryreducedgradientestimation
 Random grouping
e PCA




L. constrained strategies on Model A | FD-xentand FD-logitare

overlapped
/3100 i Difference-of-means —+~
& 20 Random-perturbation -e-
% Finite-difference xent -
S 60 Finite-difference logit ——
2 Query-reduced PCA-100 logit -=
= 40 Transfer Model B FGS xent &
g Transfer Model B FGS logit -=
E;) 20 White-box FGS logit —
2 White-box FGS xent ——
O ]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
€

Effectiveness of various single step black-box attacks on MNIST. The y-axis representsthe
variationin adversarial successas € increases.

Finite Differences method outperform other black-box attacks and achieves similar

attach successrate with the white-box attack




L, constrained strategies on Resnet-32

rglOO o Difference-of-means -
& 30 Random-perturbation -e-
% Finite-difference xent -»-
8 60 Finite-difference logit ——
2 Query-reduced PCA-400 logit —
= 40 - Transfer Resnet-28-10 FGS xent -8
g ‘ White-box FGS logit
3 90 White-box FGS xent -»
>

<

<

=
0O 4 8 12 16 20 24 28 32

€
Effectiveness of various single step black-box attacks on CIFAR-10. The y-axisrepresentsthe
variationin adversarial successas € increases.

Finite Differences method outperform other black-box attacks and achieves similar

attachsuccessrate with the white-box attack




Gradient Estimation Attack with Query
Reduction

Random feature groupings for Model A PCA-based query reduction for Model A PCA-based query reduction for Resnet-32

é?10() r None —— §100 i None —+ <

S 112 - € ol 400 = S

§80* 23 %80; 200 -=- Z

Q 12 — Q 100 — Q

é) 60 6 -= é) 60 50 - é)

S 20 S 20 o

] ] ‘ S

< 0 3 i i j < 0 ‘ i i i i i i < L i \ i i i j
0O 01 02 03 04 05 0.1 0.150.20.250.30.3504 4 8 12 16 20 24 28 32

€ € €

Adversarial success ratesfor Gradient Estimation attacks with query reduction on Model A (MNIST) and Resnet-32 (CIFAR-10).

Finite Differences method with query reduction perform approximately similar with the gradient estimation

black-box attack




Black-box Attack Clarifai

Originalimage, classified as “drug” Adversarial example, classified as
with a confidence of 0.99 “safe” with a confidence of 0.96

The Gradient Estimation black-box attack on Clarifai’'s Content Moderation Model



Black-box Attacks

Black-box attacks are possible on deep neural
networks with query access.
The number of queries needed can be reduced.



Generating Adversarial Examples with
Adversarial Networks

Real |_|
|| D Lean

Adv
= L]
Z g z+ g(x) Discriminator
— - - ——
Original instance Perturbed instance : .

Generator —>| I
i [g—ﬂ Lz Black-box can be performed
T here via distillation
Target white-box |

/distillated Black-Box™— - — - =

Loan = Epupyn@) logD(x) + Epop,,o(z) 10g(1 — D(x + G(2)))
L=r!

adv

+ aEGAN + Bchinge

The GAN loss here tries to ensure the diversity of adversarial examples

[Chaowei Xiao, Bo Li, Jun-yan Zhu, Warren He, Mingyan Liu, Dawn Song, 2017]



Black-boxattack on MNIST
The perturbedimagesare very close tothe original ones. The originalimageslie on the diagonal.

Semi-white box attackon MNIST



brbininbudn 4
A A A A 4 ar|=

*whi' *dehi'

T Thor T Tl T T Ths T

[ - -~y - " ey " ey

(a) Semi-whitebox setting (b) Black-box setting

The perturbed images are very close to the original ones. The original images lie on the
diagonal.



Poodle Ambulance Basketball  Electric guitar



(c) Buckeye (d) Toy poodle



Attack Effectiveness Under Defenses

Data | Model | Defense FGSM Opt. AdvGAN

Adv. 4.3% 4.6% 8.0%
A Ensemble 1.6% 4.2% 6.3%
Iter.Adv. 4.4% 2.96% 5.6%
Adv. 6.0% 4.5% 7.2%
MNIST B Ensemble 2.7% 3.18% 5.8%
Iter.Adv. 9.0% 3.0% 6.6%

Adv. 2.7% 2.95% 18.7%

C Ensemble 1.6% 2.2% 13.5%

Iter.Adv. 1.6% 1.9% 12.6%
Adyv. 13.10% 11.9% 16.03%
ResNet Ensemble. 10.00% 10.3% 14.32%
CIFAR Iter. Adv 22.8% 21.4% 29.47 %
Adyv. 5.04% 7.61% 14.26%
Wide ResNet | Ensemble 4.65% 8.43% 13.94 %
Iter.Adv. 149% 1390% 20.75%

Attack success rate of adversarial examples generated by AdvGAN in
semi-whitebox setting under defenses on MNIST and CIFAR-10



Attack Effectiveness Under Defenses

Black-Box Leaderboard (Original Challenge)

Attack Submitted by  Accuracy  Submission Date

AdvGAN from "Generating Adversarial Examples

. . AdvGAN 92.76% Sep 25, 2017
with Adversarial Networks"

PGD against three independently and

. . . Florian Tramer  93.54% Jul 5, 2017
adversarially trained copies of the network

FGSM on the CW loss for model B from

. .. Florian Tramér = 94.36% Jun 29, 2017
"Ensemble Adversarial Training [...]"

FGSM on the CW loss for the

initial entr 96.08% Jun 28, 2017
naturally trained public network (initi ) ° ! '

PGD on the cross-entropy loss for the

initial entr 96.81% Jun 28, 2017
naturally trained public network ( ) °

Attack using Gaussian Filter for selected pixels

Anonymous 97.33% Aug 27, 2017
on the adversarially trained public network i ° g%y

FGSM on the cross-entropy loss for the

initial entr 97.66% Jun 28, 2017
adversarially trained public network ( ) '

PGD on the cross-entropy loss for the

initial entr 97.79% Jun 28, 2017
adversarially trained public network ( y) '



Spatially Transformed Adversarial
Examples

Benign image x Adversarial image X ;4

(u(i) V(i) )

adv’ “adv

Bilinear
Interpolation

SO > Flow calculation
NN & "'\'-"" (Au®, Av®D) (u®,v®) = (ugﬁv + Au(i),v§2V + Av(i))
D

(o v e+ 2

L 200 "
Av® @O vO)

f* = arg}nin L adv (CC, f) + T‘Cﬂo'w (f)a

[Xiao, Zhu, Li, He, Liu, Song. ICLR 2018]



Examples generated by stAdv

D)
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[Ny
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72]
7,]

Benign

Adversarial

od S & v N -~ SIS
Ny NS v N~ GER

Flow visualization on MNIST. The digit “0*’ is misclassified as “2’’.

o N\ &0y .o v - G

-~ ~, ~ .
G 9499394G49349
Adversarial examples generated by stAdv on MNIST
The ground truth images are shown in the diagonal



Attack Effectiveness Under Defenses

Model Def. FGSM C&W. stAdv
Adv. 43%  4.6% 32-62‘;? Model Def. FGSM C&W.  stAdv
A Ens. 16%  42% 48.07% Adv. 13.10% 119% 43.36%

PGD 44% 296% 48.38%
ResNet32 Ens. 10.00% 103% 36.89%

Adv. 60% 45% 5017%
PGD 228% 21.4% 49.19%

B Ens. 27% 3.18% 46.14%
. Adv. 5.04% 761% 31.66%

PGD 9.0% 3.0% 49.82% wide

Ens. 465% 843% 29.56%
Adv. 322% 086% 3044% ResNet3d o0 1000 oo SrC
C Ens. 145% 098% 28.82% i YR i

PGD 21% 098% 28.13%

Attack success rate of adversarial examples generated by stAdv against differentmodels under standard

defense on MNIST and CIFAR-10



Attention of network

(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat

® (2) ()

CAM attentionvisualization for ImageNetinception_v3 model. (a) the original
image and (b)-(d) are stAdv adversarial examples targeting different classes.
Row 2 shows theattentionvisualizationfor the correspondingimagesabove.

(e)



inception_v3 model

(a) Benign (b) FGSM (c) C&W (d) StAdv

Adversarial trained
inception_v3 model

(e) Benign (H FGSM (g) C&W (h) StAdv

CAM attentionvisualization for ImageNetinception_v3 model. Column 1 shows the CAM map
correspondingto the originalimage. Column 2-4 show theadversarial examples generated by
different methods. (a)and (e)-(g) are labeled as the ground truth “cinema”, while (b)-(d) and (h)
are labeled as the adversarial target “missile.”



Adversarial Examples Prevalent in Deep Learning Systems

* Most existing work on adversarial examples:
— Image classification task
— Target model is known

* Ourinvestigation on adversarial examples:

Deep
Reinforcement
Learning

Blackbox

Generative

Models Attacks

Weaker Threat Models
VisualQA/ (Target model is unknown)

Image-to-code New Attack
Methods

Other tasks and model classes Provide more diversity of attacks



Generative models

. VAE-like models (VAE, VAE-GAN) use an intermediate latent
representation

. An encoder: maps a high-dimensionalinputintolower-
dimensionallatent representation z.

. Adecoder: mapsthe latent representation backto a high-
dimensionalreconstruction.

Encoder Decoder
. / . - X
.fcnc ./dcg




Adversarial Examples in Generative Models

. An example attackscenario:
. Generative model used asa compression scheme

%7,0, fonc

Attacker Compression

Z Y
NNANNAN oo —>0O
Decompression

. Attacker’s goal: forthe decompressorto reconstruct a
differentimage from the one that the compressor sees.



Adversarial Examples for VAE-GAN in MNIST

Q

Target Image
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Reconstruction of original images

Originalimages

ocooooocoodo
Oovoo0ooo0oo0o0oo0
Q000000000
Qoooo0o0oo0oo0oo0o0
o0 o0o0o0vo0oo0o000
ooooo0oooooo
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Reconstruction of adversarial examples
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LRl L (R S v
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~HitTr=y MM NS
N=T (>~
SNraNhyoers«sSo

Adversarial examples

Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Adversarlal Examples for VAE-GAN in SVHN

Target Image

Adversarial examples Reconstruction of adversarial examples

Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Reconstruction of original images

AAAAALAAAA
AaaAAAAHAA
a000AAA0
A08000AAAA
A0A0AAAAAA
0080880008
0008080680
ﬁﬂﬂﬁﬂﬁﬁﬁﬂg
AnAAAAAAA
Reconstruction of adversarial examples

Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Takeaways

VAE-like generative models are vulnerable to
adversarial examples



Visual Question & Answer (VQA)

/

10k xtaxie
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>

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, Fukui et al., https://arxiv.org/abs/1606.0184 7



Answer:

Q: Where is prus ‘ ‘ Runway
the plane? —
Benign image
Fooling VQA e {
s VQA
=) mm) Sky
Target: Sky

Adversarial example



Answer:
. VQA

Q: How many —> )
cats are there?

Benign image

Fooling VQA

= [ = °

Target: 2

Adversarial example



A3C: A Deep Policy on Pong
I

Reinforcement learning algorithms:

* Actor — policy network to predict the
action based on each frame

 Critics — value function to predict the
value of each frame, and the action is
chosen to maximize the expected
value

* Actor-critics (A3C) — combine value
function into the policy network to
make prediction




Agent in Action: attack the policy
network

Original Frames Adversarial perturbation
injected into every frame

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies. ICLR Workshop 2017



Agent in Action: attack the value
function

Original Frames Adversarial perturbation
injected into every other 10
frames

Song et al.: Delving into adversarial attacks on deep policies. [CLR Workshop 2017



Takeaways

Reinforcement learning systems (e.g., robotics, self-
driving systems) are also vulnerable to adversarial
examples

To attack a reinforcement learning system, adversarial
perturbations need not be injected to every frame.
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<
coﬁee break

Coffee Break!
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Numerous Defenses Proposed

1D(

PMW

HCK+

| Ensemble

Normalization
Distributional detection
PCA detection
Secondary classification
Stochastic

Generative

Training process
Architecture

Retrain

Pre-process input

~ Detection

~ Prevention




Towards Deep Learning Models
Resistant to Adversarial Attacks

min p(0), where p(0) =Eqgy)~p max L6,z +4,y)

e Use a naturalsaddle point (min-max) formulation to capture the
notion of security against adversarial attacksin a principled

manner.
e The formulation casts both attacks and defensesinto a common

theoretical framework.
* Motivate projected gradientdescent (PGD) as a universal “first-

orderadversary”.

Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2017.



Model Capacity




Accuracy

Towards Deep Learning Models
Resistant to Adversarial Attacks

MNIST
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Benign

OPTBRITTLE

OPTMARGIN

(ours)

FGSM

MNIST Test image 3153

CIFAR-10 Test image 5415
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Decision Boundary Analysis of
Adversarial Examples

10 3
Adjacent classes > Purity scores first 3 >
Input convid convid
_ , L fc fc [ Output
Boundary distances —>»{ Sorted distances ' H flatten
2
1536 32
96x16

He, Li, Song, Decision Boundary Analysis of Adversarial Examples, ICLR 2017.



False pos. False neg. Accuracy
Training attack Benign OPTBRITTLE OPTMARGIN  Our approach Cao & Gong

MNIST, normal training

OPTBRITTLE 1.0% 1.0% 74.1%
OPTMARGIN 9.6 % 0.6% 7.2% 90.4% 10%
MNIST, PGD adversarial training
OPTBRITTLE 2.6% 2.0% 39.8%
OPTMARGIN 10.3% 0.4% 14.5%
CIFAR-10, normal training
OPTBRITTLE 5.3% 3.2% 56.8%
OPTMARGIN 8.4% 7.4% 5.3% 96.4% 50,
CIFAR-10, PGD adversarial training
OPTBRITTLE 0.0% 2.4% 51.8%

OPTMARGIN 3.6% 0.0% 1.2%




Adversarial Examples Detection
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Adversarial Examples Detection via
Local Intrinsic Dimensionality (LID)
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Layers used for LID estimation




Train a detector

random samples

.| normal minibatch @
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<
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Adversarial Examples Detection

Dataset Feature FGM BIM-a  BIM-b JISMA Opt
KD 78.12%  99.14%  98.61% 68.77%  95.15%
MNIST BU 3237% 91.55% 25.46% 88.74% 71.29%
KD+BU | 82.43% 99.20% 98.81% 90.12%  95.35%
LID 96.89% 99.60% 99.83% 92.24% 99.24%
KD 64.92% 68.38% 98.710% 85.77%  91.35%
CIEAR-10 BU 70.53% 81.60% 97.32% 87.36% 91.39%
KD+BU | 70.40% 81.33% 98.90% 88.91% 93.77%
LID 82.38% 82.51% 99.78% 95.87% 98.93%
KD 70.39%  77.18% 99.57% 86.46%  87.41%
SVHN BU 86.78% 84.07% 86.93% 91.33% 87.13%
KD+BU | 86.86% 83.63% 99.52% 93.19%  90.66%
LID 97.61% 87.55% 99.72% 95.07% 97.60%

MNIST CIFAR-10 SVHN

Attack Failure Rate (one-layer)

100%

95.7%

97.2%

Attack Failure Rate (all-layer)

100%

100%

100%
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There Is Still A Long Way For Defense

* Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods [carlini, wagner]

e Better threat model

e Better understanding of neural networks



Poisoning Attacks

Traditional machine learning approaches assume

[Training Data I...| ]

N
N

Testing Data l1.1.
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Training Inference

Training Data Test Data

!

Machine Machine
Lea_rr{mg I ~> Learmng model

Training

Prediction




Training Data Poisoning

Training Data

$

Machine
Learning

Training

Inference

Test Data

|

Machine

|

Training is under
control of the
defender

Learning model

|

Prediction

Test data is not
tampered



Data Poisoning Attacks for Factorization Based
Collaborative Filtering

* Problem
— Poisoningattack within learning systems
— Recommendation systems
* Nearest neighbor methods

e [ow-rank Matrix Completion

users

112 13[4 |5 |6 |7 |8 |9 |10]11]12
1 [ 3 5 5 4
2 5 |4 4 2 [1 [3
3324 1 |2 3 4 |3 |5
<
¢ g 2 |4 5 4 2
5 4 |3 |4 |2 2 |5
6 |1 3 3 2 4

D - unknown rating |:‘ - rating between 1 to 5

* Task: Complete ratings matrix
¢ Applications: recommendation systems, PCA with missing entries

B. Li, Y. Wang, A. Singh, and Y. Vorobeychik. Data Poisoning Attacks on Factorization-based Collaborative Filtering. (NIPS). 2016



Data Poisoning Attacks for Factorization Based
Collaborative Filtering

* Preliminaries

— Low rank matrix completion

Xn]';in |IRa(M — X)||%, s.t. rank(X) <k ,where ||A[|Z = i A
e im-)(ﬂ B

— Alternating minimization

min Ro(M — UV N2
UEIB{m-Xk,Ve]Rnxk{H Q( )“F

12\ ||U||f: + 2\y ||V||%?}

— Nuclear norm minimization

min ||Ro(M — X)||% + 2X|1X]|.
XeRan-



Data Poisoning Attacks for Factorization Based
Collaborative Filtering

Goal: M* ¢ argmaxs— R(MM)J

MeM

e Threatmodel

— Assume attack maliciousinjectam rows M

©,(M; M) = argmin [|[Ro(M—UV")|2+ |[Rg(M  ©x(M; M) = argmin |Ro(M — X)|}
uU,uv X, X

—TV)|12 + 220 (U2 + [T]2) + 220 [ V|2 + [Re(M — X)|[7 + 22| (X X) |
— Availability attack
R (M, M) = ||Rqc (M - M)|%

— Integrity attack
R% (M, M) Z PR
i=1 jeJdy

— Hybrid attack

R (ML M) = 1 R, (M, M) + pp R (M, M)
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Data Poisoning Attacks for Factorization Based
Collaborative Filtering

e Mimic normal user behaviors

— Normal users do not pick items uniformly at
random

only normal users

— Stochastic gradient Langevin Dynamics (SGLD)

~ — — . om' ' m o [Wellingand Teh 2011.]
p(M[M) = po(M)p(M|M)/p(M) poM) = [T TV Mij:¢5,03)
o exp _iiw+6R(ﬁ M) s
im1 j=1 207 ’ p(M|M) = %exp (B - R(M, M))



Data Poisoning Attacks for Factorization Based
Collaborative Filtering

* Normal users usually do not rate items uniformly at random

Algorithm 2 Optimizing M via SGLD
1: Input: Original partially observed m x n data matrix
M, algorithm regularization parameter A, attack bud-
get parameters «, B and A, attacker’s utility function
R, step size {s;};2,, tuning parameter 3, number of

SGLD iterations 7.

2: erior7 nsetup: compute §; = % Z:L M,;; and (TJQ- =

— 3 (M — &;)? forevery j € [n].

3: Imtlallzatlon sample M( ) o N (& 32-) fori € [m/]
and j € [n].

4: fort =0to T do .

5. Compute the optimal solution @ (M(): M).

6: | M) = M©® 4 %t (VM logp(ﬁ|M)) + ¢

7:  Update M'\*™* according to Eq. (13).

8: end for

9: Projection: find M* € arg ming; MHM M®)|[2,.

Details in the main text. .
10: Output: m' X n malicious matrix M*.




Data Poisoning Attacks for Factorization Based
Collaborative Filtering

* Experiments

— Movielens dataset: 27,000 movies with 138,000
users

— P valueand RMSE/Average ratings for ALM with
different8 (a) u1 = 1,2 =0 (b) w1 =0, =1

2.5 : 2.5
e== P.value e== P-value
20l | ™ RMSE 20l ™ Average rating
@
=]
- I
5 "
E 1.5 & 150 /__—— |
| -1}
a =
= =
£ 1.0 5 1.0
P L. 8D -
g | Ttteaga. & | T "tea.,
........ 3 -.-...___-
..... z T
0.5 S 0.5 R IO
/ ......
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~
.
00 . - 0 00




Data Poisoning Attacks for Factorization Based
Collaborative Filtering

* Experiments

— RMSE for ALM with different percentage of malicious
profiles

(a) ,ulzl,,UQ:O (b) Iul:l,lu2:_]_

¢
"
0.3
=
z 2
i :
0.2 [ 0
=== Uniform Attack — Uniform Attack
-= PGA ] 0.1 e== PGA
e SGLD ewve SGLD
5 0 : 0055 10 15 20 25
Percentage of poisoning samples Percentage of poisoning samples

(a) (b)



Poisoning Attack Against SVM

* To maximize the hinge loss on a validation set

m

max L(zc) = ) (1 — ykfo.(zk))+

Lc
k=1 kzl

Ms

* Gradient ascent :B’C = 2.+t - VL(x.)
d
gk = Qk]i +yk O‘c ,where Q =yy’! O K

How does the SVM solution change during a single update of L



Data Poisoning on Multi-Task Learning (AAAI’18)

Single-task learning (STL) Multi-task learning (MTL)

(a]) (8]

/ a \
B
Data poisoningon STL: Data poisoningon MTL:

taly (B

A

[ ] ]
[ ] [ ]
] [ ]
] ]
L] [ ]
L] [ ]
L [ ]
u [ ]
- n

- ]

- ]

. L]

‘ . -

. L]
. L
s : C
$’ 2
0’ ’0.
L 4
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Computing Optimal Attacks

Formulation: Bilevel Program

_ max S L(D;,wY), » Maximize loss of targeted tasks
{Di|Ti€Tats } {i|T; €ETyar}

s.t. Constraints on {ZA?Z\TZ € Tust },

Multi-task learning with

A1 Ty, A2 kT
— W = Q .
* 2 (W )+ 2 (W W), poisoned data

s.t. Q> 0,tr(Q2) = 1.

Solver: Stochastic Projected Gradient Descent

~1\1 . ~i1\t—1 D T.p »
(X5)" = Projy((X5)" NV giye—1 l((W_1) Xq,95))
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Experimental Results

[ A ] [ B ] [ C ] DIRECT attack:

0.06

0.05

0.03¢

0.06.

=l INDIRECT
@ @ DIR RAND
[|E @ IND_RAND

\Cg( Attacker poisons: A
A+B+C —
/ \ Target task: A
- A > —
B
| Sarcqs
©=® DIRECT Results:

INDIRECT attack:

Attacker poisons: B

Target task: A

Direct attacks are more effective
than indirect attacks

Both Direct attacks and Indirect
attacks are more effective than
random attacks




Poisoning Attacks for Face Recognition

— Manuel Llorente 9
»

Ciaran Hinds

Kevin Satterfield

=
| — Clint Howard

Truth image Poisoning labels
(back-door)

Adding 5 poisoning samples into the training set is sufficient to mislead the
model to predict the poisoning labels for the back-door images.

[Chen, Liu, Li, Song, 2017]
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Poisoning Attacks for Face Recognition

0.05

0.02

0.05
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Poisoning Attacks for Face Recognition

medium  large
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Poisoning Attacks for Face Recognition

Deep neural networks are easy to be poisoning
attacked.



Training Data Poisoning Inference

Test data is not
Training Data Test Data tampered

{ S } == VWhat the best can the

Training

defender do to defend

Training is under against training data
control of the p OiS Onin 87

defender



Robust Logistic Regression and
Classification

* inlier
O outlier

0.8f

The estimated logistic regression curve (red solid) is far away from the
correct one (blue dashed) due to the existence of just one outlier (red circle)

Feng et al. Robust Logistic Regression and Classification, 2013
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Definition 1 (Sub-Gaussian design). We say that a random matrix X = [z1,...,x,] € RP*™ is

sub-Gaussian with parameter (%Zm, % 2) if: (1) each column x; € RP is sampled independently

from a zero-mean distribution with covariance %Zm, and (2) for any unit vector u € RP, the random
variable u" x; is sub-Gaussian with parameter? ﬁam.

Algorithm 1 RoLR

Input: Contaminated training samples {(z1,¥1),. -, (TntnysYntn,)}> an upper bound on the
number of outliers 71, number of inliers n and sample dimension p.

Initialization: Set 7' = 44/log p/n + log n/n.

Preprocessing: Remove samples (z;, y;) whose magnitude satisfies ||x;|| > 7'

Solve the following linear programming problem (see Eqn. (3)):

B = arg max Z[?J(ﬁa Cv>](’i)'

BEB;

Output: B
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Robust Linear Regression Against Data
Poisoning Attack

Main ldeas: a two-phase solution

* Phase 1: Rely on dimension reduction (PCA) to prune
non-principal noise in the training data

* Phase 2: In the low-dimensional space, learn a linear
model (i.e., PCR)

Liu, Li, Vorobeychik, Oprea, Robust Linear Regression Against Training Data Poisoning. Aisec, 2017.



Main Challenges

 Both of the two phases can be the target of the training data
poisoningadversary

 Have no assumption on the ground truth distribution

— ... exceptassumingtheylie ina low-dimensional manifold
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What Can Be Achieved

* Prove a sufficient and necessary condition on the exact sub-
space recovery problem

— Provides a criteria that the PCA process cannot be
poisoned

* A bound on the expected test error when the
training data is poisoned up to y poisoning rate

— i.e., injectup to ¥ N poisoningsamples into the pristine
training data of N samples
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Which line fits the data better?

0O
[\



/)

Answer: democracy!

/

7

108



What about now?

/)
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Observation 1: When y = 1, itis impossible to
distinguish the poisoning samples from the
pristine ones

o @

/]
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What is the mean of the data
distribution?
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How can a data poisoning adversary
efficiently fool the mean estimator?
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Answer: leveraging the pristine data!
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Answer: leveraging the pristine data
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Answer: leveraging the pristine data
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Observation 2: the data poisoning adversary can fool
a machine learning algorithm if and only if there is a
portion of the pristine data that he can leverage
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Sub-space Recovery Problem

* Problem Definition 1 (Subspace Recovery). Design

an algorithm L..copery, Which takes as input X,
and returns a set of vectors B that form the basis

of X,

* Notation:
— X: observed (poisoned) feature matrix
— X,: the pristine feature matrix
— Xy: the pristine feature matrix with noise

* Xg = Xix +noise



Noise residual and sub-matrix residual

* Noise residual NR(X,) optimizes
H)l(i,n”Xo — X'||
s.t.rank(X') <k

* Sub-matrix residual SR(X,) optimizes

min||X} — UB]|
1,B,U

s.t.rank(B) = k,BB" =1,,X,B'B + X,
1<{1,2,..,n},|I|=(1—-y)N



Sufficient and necessary condition

e Theorem.If SR(Xy) < NR(X,), then no algorithm solves
problem 1 with a probability greater than 1/2.

 IfSR(Xy) > NR(Xp), then Algorithm 2 solves problem 1.

Algorithm 2 Exact recovery algorithm for Problem 1

Solve the following optimization problem and get .#.

min g, 1 |[X7 - L|| a)
s.t.rank(L) < k, 7 C {1,...,n+ny},|.7| =n

return a basis of X7 .
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Trimmed Principal Component Regression

TPCR Lemma. Algorithm 3
returns 8, such thatfor anyreal
valueh > 1, with at least

probability of 1 — ch™? for some
constant ¢, we have

E|(x(2-p) ]

1
<40?| 1+ [—— ] logc
1—-y

Algorithm 3 Trimmed Principal Component Regression

Input: X\ y
(1) Use Algorithm 2 to compute a basis from X, and orthogo-
nalize it to get B
(2) Project X onto the span space of B and get U « XB!
(3) Solve the following minimization problem to get /)’U

n
min Z{(yi —uify)fori=1,.,n+ ni}(j) )
/),U j=l

where z(j) denotes the j-th smallest element in sequence z.
(4) return /)’ o BBL;.
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Efficient Algorithm using Alternative Minimization

* Problem: minimize the objective in the following form:

n
m@in E{I(yi,fg(xi))‘i =1,..,n+ nl}(j)
j=1

e Strategy: iteratively do the following two steps until
convergence

— Find the subsetof {j} of size n that minimizes [ (yj,fg(xj))
— Minimize the total loss with respectto 6



Sub-space recover experiments
(synthetic data)
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Robust regression experiments

e+ LR(O) J

-== LR(O+A)

— TPCR(O+A)
.i"‘ :
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Real malicious domain dataset
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Takeaways

Message 1. The poisoning attacker can leverage
pristine data distribution to construct strong
attacks

Message 2. When the poisoning ratio is not
sufficiently large, we can bound the loss on the
computed estimator.
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Adversarial Machine Learning

* Adversarial machine learning:

— Learning in the presence of adversaries

Inference time: adversarial example fools learning system
— Evasion attacks

* Evade malware detection; fraud detection

* Training time:

Attacker poisons training dataset (e.g., poison labels) to fool learning system to learn wrong model
* Poisoning attacks: e.g., Microsoft’s Tay twitter chatbot

Attacker selectively shows learner training data points (even with correct labels) to fool learning
system to learn wrong model

— Data poisoning is particularly challenging with crowd-sourcing & insider attack
— Difficult to detect when the model has been poisoned

Adversarial machine learning particularly important for security critical system
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Bo Li
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